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Introduction




Inspiration

* Traditional drug discovery is costly, time-
consuming, and has a low success rate.

e Computational techniques are crucial for

revolutionizing drug discovery workflows.

* Recent advances in cloud computing and
Al/ML could help accelerate drug
discovery.
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Potential Applications of Al in Drug Discovery
Process

Benchmark compounds set
Predict target’s role in a discase
Alin drug 1 « Design of in sifico compound lbraries * Prediction of structure-activity * Drug repurposing
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Drug Discovery Today

In-Jin, 2019, https://tcpharm.org/DOIx.php?id=10.12793/tcp.2019.27.3.87



Importance of PLCs in
Computer-aided Drug Design



Protein-ligand Complexes (PLCs) & their role in Drug

Design

Proteins are essential biological
molecules with diverse structures and
functions.

Ligands, or small molecules, can alter or

assist protein structure and function by
binding to proteins.

Drug design often involves tuning
druggable molecules to interact
energetically with protein binding sites.

Predicting binding affinity in PLCs is
challenging but crucial for drug design.

In-silico methods reduce production costs

and enable the study of inaccessible
molecular interactions
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Popular Existing Datasets & Limitations

PDBbind (2004 onwards, 23,496 PLC entries; http://www.pdbbind.org.cn/)

DUDE (2012 onwards, 22,886 active compounds; https://dude.docking.org/)

ONIONnet (2019 onwards; https://pubs.acs.org/doi/10.1021/acsomega.9b01997)

BindingDB (2007 onwards; https://www.bindingdb.org/rwd/bind/index.jsp)

AffinDB (2006 onwards; https://academic.oup.com/nar/article/34/suppl_1/D522/1132614)
Binding MOAD (2005 onwards, 41409 structures; http://www.bindingmoad.org/)

Limitations
Poor target and ligand diversity
Low transferability to broad drug targets
Lack of high-energy data (both structural & thermodynamic)

Low volume
High variability in validation quality — experimental errors from different labs & time



http://www.pdbbind.org.cn/
https://dude.docking.org/
https://pubs.acs.org/doi/10.1021/acsomega.9b01997
https://www.bindingdb.org/rwd/bind/index.jsp
https://academic.oup.com/nar/article/34/suppl_1/D522/1132614
http://www.bindingmoad.org/

Motivation behind calculating PLC Binding Affinity

Machine learning based scoring

functions, for predicting binding affinity,

have acceptable evaluation scores.

Yet, they fail to perform similarly in
virtual screenings.

Hidden biases plausibly originate from
data obtained from different
experimental protocols.

Inspiration to create a homogeneously
computed Binding Free Energy of PLCs.

Hmm... Good Correlation, but
O what about the Bias ! ?
® Is it Generalizable ?

Protein-Ligand Deep Learning
Database Model

v
v
Binding Affinity Performance
Prediction Analysis

Latent Biases in Machine Learning Models for Predicting Binding Affinities
Using Popular Data Sets, Kanakala, 2023
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A|3: Generate and Validate World’'s Largest PLC dataset

* The World's Largest Open PLC Dataset

(Al13: OPLD) initiative aims to address +——— Stage 1 . Stage 2b ————
corresponding dataset limitations. et || [Connmind | momtmmer| | cemeun ke
20KPLDataset W) 20KPLDataset W) 200KPLDataset )| 200K PL Dataset
] Generation Generation Generation Generation
* Collaboration between AWS, IlIT-H, ‘ g /

INTEL,
and Insilico Medicine.

‘-—i Stage 23 ———

Preparation for | Compute Run for
2KPLDataset B! 2KPLDataset

Computational
(‘dry-lab’)

* Phase 1 AI® dataset, consists of ~20,000 [ ston | Mevdation
PLCs and corresponding binding affinity. _ : \«— Stage 3 —
% r_g‘ Experimental Run
* Goal: Create a dataset with ~220,000 £EL LR Detaest
entries, including the negative examples. ;%:E |

1



Dataset Preparation

Loop Modelling using

| Modeller S ¢
* The AIB (AWS-IIITH-Intel-Insilico) datasetis 4 - =—\------~= - y /! e
being prepared in two stages: Stage 1 (20 K  proein ,Z;?jﬂ;gs)l»/ L ' 2
I y server. om e_x
bound PLCs) and Stage 2 (200 K unbound O - gy - | Fragitiion
g imple igan .
or partially bound PLCs). (L'gz?a(:::;d)/( Ig%nd) i Lgena
rig B
| * Protein structures are downloaded from : igend
: RCSB PDB, and missing residues are | L Ranping e )

. Backbone restrain .
| modeled, modeler package UCSF Chimera. ! oo AR E ot
—— e mm Em Em Em Em o Em e e Em Em Em Em Em Em Em Em Em Em Em Em Em o = | slowly) 300K ’

(/= = = = = = 9 R e i e e i -

: * Protonation states are determined, from | f |
| H++ Server, at pH 7.4. | ( Minimization )— Equilibration ~ —  Production
: !

|
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MD simulations protocols

R
PDB Database

Loop Modelling using
Modeller

. QYes Protonati / P::tj:‘a ion
* Amber ff1414 SB force field, TIP3P water Urcen ) @isnay - envsno ™
model, GROMACS simulation package. — Progdiaton
lgand and (élmpl (Ligand)—* 4
___________________ —_—— = — - Cofactor Ligand. + ll':‘lrgeir;?ation
 Solvated PLC systems were subject to 2000 T =

|
steps of steepest descent energy :
minimization and heating to 300 K. l

 Backbone restrained were removed in a :
following NVT ensemble simulations, for I
400 ps time length. '

p r 1
( Minimization )—* Equilibration ~—
l : L ]

'eptide a
ligand
Ramping the

|
NVT Ensemble 4
(Backbone restrain ‘_L_ | tsg:‘t:::ature Input
are removed | | from 50K to |n|m|zat|o Gen:rated
slowly) [ I 300K °

Production
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MD simulations protocols

* Multiple short independent simulations are

conducted to reduce uncertainty in
predicting binding affinities.

e Each independent production MD runs are

carried out under NPT conditions at 300K
for 6 ns.

e Simulation frames are saved at regular
intervals for analysis. The last 4 ns of data
are used for binding free energy
calculations.

Loop Modelling using
Modeller

=y
PDB Database
Yes Protonati

Protem]\ Mlssmg on using
( ( resndue H++

server.

_ Cofactor Ligand

- =

eptide as
ligand

NVT Ensemble ol

) system
(Backbone Lestraln oo temperature
alre rlemove from 50K to
slowly) 300K

) . f
( Minimization )— Equilibration
> < i

"Ligand and SlmpI ) (ngand)——*

Protein

J preparation

Complex

Preparation

ngand

~ Energy I
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Binding Free Energy Estimation

Loop Modelling using

* The binding free energy is estimated using

the molecular mechanics Poisson- e o/ Proin
( Protein )-\ Missing on using
residue: H++

Boltzmann surface area (MM-PBSA)
approach.

* This method treats the solvent
environment as a dielectric continuum.

PDB Database

Modeller

eptlde as
ligand

(’Ligand and‘)/v( f:g‘a’:‘lg }W

server.

| Ligand |——

Ligand
Preparation

C

omplex

Preparation

. nsemble Ramping the
Polar and nonpolar solvation components o e -~ -
are estimated. Sy fhoe TR Goneratsd | _.

* Asingle trajectory protocol is used to
estimate binding affinities, ensuring
robustness and accuracy.

( Minimization )— Equilibration =~ —  Production
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Technology Stack and Architecture

Simulation Code Job Management Code Cluster Management Code
(GROMACS, MMPBSA) (bash) (aws-do-pcluster)

Job Orchestrator Cluster Orchestrator
(SLURM) (Parallel Cluster)

Networking Compute Instances Machine Image
(ENI) (Intel Xeon CPU) (Amazon Linux 2)

Short-term Storage Long-term Storage
(FSx for Lustre) (S3)

Application

Orchestration

Compute

Storage
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Execution and Deployment Architecture

50,000

100,000

24

6-8 hrs

500,000

40

8-12 hrs
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Leveraging AWS's “Planetary-scale” Computing

Footprint
o sm1 [

PLC1:SiM 2 S  Job2

Batch 1

2000 PLCs PLC1:Sim 3 Job3

100,000+
Servers

PLC1: Sim 4 Job 4

Batch 2 PLC1:Sim 5 Job 5

—

Batch 3

—_

PLC20k: Sim 1 S job1 |

PLC20k: Sim 2 guumememmms  Job 2

PLC20k: Sim 3 Job 3 -

PLC20k: Sim 4 Job 4

Batch 10

PLC20k: Sim 5 Job 5




Total Compute utilized ... for Stage 1

100,000+ Servers -

2.3M+ CPU cores

100M+ CPU core-hours 3 \\/ppks
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Stage 1: PLAS-20k as a Baseline Validated
Dataset

Training Deep-Learning Models with PLAS-20K
® Objective: Accurate prediction of Protein-Ligand (PL)
complex binding affinity.
3 Ligand
3500 [ Protein
® Method: Utilizing PLAS-20k dataset and deep learning —
model OnionNet. 5
2500 A g
® Results: PLAS-20k achieves PCC of 0.91 (Strong §2°°°‘ §
correlation). 1500 - %
1000 - &
@® RMSE of 8.15 kcal/mol (Accurate predictions). 500
T . _ . . 0- T T
® significance: PLAS-20k dataset is a powerful training 0 2 4 6 8 e
resource. RMSD (4) Ground Truth (kcal/mol)
® PLAS-20k demonstrates the potential of deep learning in https://doi.org/10.26434/chemrxiv-2023-mg07d
binding affinity prediction.

21




Stage 1: Results (PLAS-20k versus Al3)
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Stage 1: Comparison with Other Datasets

PCC
0.5686
0.5421

Dataset
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Al3
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Github Repo
(coming soon)




Future Plans for the Al° Dataset

Evaluate ~100
kinase inhibitors

—

g Generate experimentally in

% ~220,000 the same lab

) PLC conditions, and
RMSD (A) datasets_ validate

computational
results.

Join us on the AI® journey to build the largest PLC Datasets & Accelerate Drug Discovery
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Target Hit Lead Pre-clinical Clinical

Discovery Identification Optimization trials trials
Identify Screen for Hit Hit-to-Lead Evaluate Evaluate
disease compounds to conversion pharmaco- safety, dosage,

modulating inhibit target and lead kinetic efficacy and

target protein protein optimization properties adverse effects
Ligand-based ! « QSAR modeling
‘ » Computational chemistry
* Chemical space
Structure-based « Cheminformatica

* Molecular profiling

Systems-based

* Molecular modeling

* Protein structure prediction
* Molecular docking

* Molecular dynamics

» Network pharmacology
—— + Proteochemometric modeling
- Pathway analysis

Schematic summary of the drug discovery process overlayed with corresponding computational approaches

Computer aided drug design methodology (1990s) (Nalini, 2020)



Molecular Dynamics (MD) Simulations

_ ) Multi Trajectory Approach
protein conformational rearrangements

during binding.

e

* Molecular dynamics simulations consider /f"\\\
3

S DW

J

-

\ /
~Re eptor/ Evaluate
e = E,. and G =

* Techniques like MM-PBSA and MM-GBSA /}\ Receptor
calculate binding free energy. / N Dynamics Trajectory
{ $
* Post-processing methods, including I =>=>

thermodynamic integration and free- S
energy perturbation (FEP), contribute to
binding free energy determination.

%

Gblnd o (Gcomphx )- (Gmoptor) 2 (Gllgmd)

Evaluate
= =

AGum-prBsa = AEym + AGso;
MMM — AEefe +Mvdw

Single Trajectory Approach

—==m 5 B, 5 BB feseee— :
Evaluate Cale .

Snapshots of Receptor, E. and G Gu a
Ligand and Complex MM SOLY a :

;

.ll..l..ll.l..lll..:}"

In Silico Engineering of Proteins That Recognize Small Molecules, Mishra, 2012




Stage 2b: Higher Energy PLCs (under development)

For each PLC, 10 partially bound
(higher energy) structures are
generated through steered MD

Application: Negative examples in

Partla_lly b_ound or Unbc_Jun.d machine-learning model training —
Protein-Ligand (P-L) Binding > faricomputationalldrig S
Affinity Dataset | | discovery =
o

<

RMSD (A)
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